ANTITUMOR AGENTS, 110.^{1,2} BRYOPHYLLIN B, A NOVEL POTENT CYTOTOXIC BUFADIENOLIDE FROM *BRYOPHYLLUM PINNATUM*

Takashi Yamagishi, Mitsumasa Haruna, Xiu-Zhen Yan, Jer-Jang Chang, 3 and Kuo-Hsiung Lee*

Natural Products Laboratoy, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599

ABSTRACT.—Bryophyllin B [1], a potent cytotoxic bufadienolide, has been isolated from *Bryophyllum pinnatum* and its structure confirmed by the use of 2D-nmr techniques and difference nOe method. Transformation of bryotoxin C [2] to 1 with acid is also discussed.

We reported previously on the isolation of bryotoxin C (bryophyllin A) [2] (1), a bufadienolide 1,3,5-orthoacetate with potent cytotoxicity, and bersaldegenin-3-acetate [3] (3,4) from the CHCl₃ extract of *Bryophyllum pinnatum* (Crassulaceae). Bryotoxin C was first isolated by Capon *et al.* (2) from *Bryophyllum tubiflorum* without reporting any biological activity. Further investigation of a cytotoxic H₂O extract of this same plant has led to the isolation of bryophyllin B [1], which showed potent cytotoxity with $ED_{50} < 80$ ng/ml against the in vitro growth of KB tissue culture cells (Table 1). We report herein the isolation and structural elucidation of bryophyllin B [1]. The transformation of 2 to 1 with acid is also discussed.

RESULTS AND DISCUSSION

The H_2O extract of the whole plant of *B. pinnatum* was concentrated and partitioned between H_2O and $CHCl_3$. Guided by the assay in KB cells as shown in Scheme 1, the active principles were concentrated in the $CHCl_3$ (Fractions A and B) and the H_2O extracts. Bryotoxin C (bryophyllin A) [2] and bersaldegenin-3-acetate [3] were isolated from the $CHCl_3$ extract. The H_2O -soluble part was extracted with *n*-BuOH, which in turn was chromatographed on Sephadex LH-20 Si gel and reversed-phase

¹For part 109 see D.J. Pan, Z.L. Li, C.Q. Hu, K. Chen, J.J. Chang, and K.H. Lee, submitted for publication in *Planta Med*.

²Presented, in part, at the 16th International Symposium on the Chemistry of Natural Products (IUPAC), Kyoto, Japan, May 29–June 3, 1988, "Abstracts," p. 232.

²Division of Laboratory Animal Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599.

Compound	KB	A-549	HCT-8	P-388	L-1210
	(ng/ml)	(ng/ml)	(ng/ml)	(µg/ml)	(µg/ml)
Bryophyllin B [1] Bryotoxin C [2] Bersaldegenin-3-acetate [3]	<80 14 <40	10 40	30 10		 >4 >4

TABLE 1. Cytotoxicity of Compounds 1, 2, and 3 Against Various Tumor Cells.

hplc, successively, to afford the active principle, bryophyllin B [1], in 0.000043% yield.

Bryophyllin B [1] was obtained as a colorless amorphous powder and analyzed for $C_{26}H_{34}O_9$. Its uv and ir spectra indicated the presence of a dienone system (λ max 298

SCHEME 1. Extraction and Isolation of Bryophyllin B [1].

nm) as well as hydroxyl (3400 cm⁻¹) and carbonyl (1695 cm⁻¹) groups as seen in **2**. The fabms of **1** showed the appearance of an $[M]^+$ peak at m/z 490 and fragment ion peaks at m/z 472 $[M - H_2O]^+$ and 432 $[M - HOAc]^+$. Detailed analysis of the ¹H- and ¹³C-nmr spectra (Table 2) of **1** in ¹H-¹H COSY

Detailed analysis of the ¹H- and ¹³C-nmr spectra (Table 2) of **1** in ¹H-¹H COSY (Correlation Spectroscopy) (Figure 1) and ¹³C-¹H COSY (Figure 2) suggested the presence of a methyl ($\delta_{\rm H}$ 0.84 and $\delta_{\rm C}$ 20.57), a secondary acetoxyl ($\delta_{\rm H}$ 2.07 and 4.69; $\delta_{\rm C}$ 171.00, 21.20, and 73.38), a γ -substituted $\alpha, \beta, \gamma, \delta$ -unsaturated- γ -lactone (α pyrone) ($\delta_{\rm H}$ 7.45, 7.87, and 6.92; $\delta_{\rm C}$ 149.32, 147.32, 115.41, 122.66, and 162.07), a secondary hydroxyl ($\delta_{\rm H}$ 3.79 and $\delta_{\rm C}$ 65.01), two tertiary hydroxyl ($\delta_{\rm C}$ 76.08 and 85.60), and lactol ($\delta_{\rm H}$ 5.75, 3.99, and 1.30; $\delta_{\rm C}$ 104.66, 79.99, and 49.53) groups. Treatment of **1** with Ac₂O in pyridine gave diacetate **4**, which was transformed to monoacetate **5** after standing in CHCl₃ for two days. These foregoing data and experiment indicate that **1** may be a compound closely related to **2** except that the orthoacetate and acetal groups differ from each other.

Each carbon signal, except the quarternary one, was assigned based on the ${}^{13}C{}^{-1}H$ COSY spectral data (Figure 2). In the ${}^{1}H{}^{-1}H$ COSY spectrum of 1, six mutual relations from H-1, H-3 (twice), H-8, H-11, and H-17 to 2-CH₂, 4-CH₂, 7-CH₂, 12-CH₂, and 16-CH₂ methylene protons due to an ABX system were elucidated as shown in Figure 3. The configuration of each X-type proton of this ABX system is in an axial orientation, which has a large coupling constant (Table 1). Furthermore, the relationships be-

Position	'Η	¹³ C
1	4.69 (1H, dd, $J = 4.03$, 12.45 Hz) 2.11 (1H, ddd, $J = 4.03$, 4.64, 12.45 Hz) 1.54 (1H, g, $J = 12.45$ Hz)	73.38 (d) 39.51 (t)
3	3.79(1H, m)	65.01(d)
4	1.96–1.98 and 1.88 (each 1H, obscured signal)	47.79(t)
5		76.08(s)
6	1.98 and 1.58 (each 1H, obscured signal)	32.11(t)
7	1.11(1H, dddd, J = 3.78, 9.52, 12.94, 13.31 Hz)	20.78(t)
	1.96–1.98(1H, obscured signal)	
8	2.42(1H, ddd, J = 2.93, 11.35, 13.31 Hz)	39.97 (d)
9	1.30(1H, t, J = 11.35 Hz)	49.53 (d)
10		54.37 (s)
11	3.99(1H, ddd, J = 3.30, 11.35, 11.85 Hz)	79.99(d)
12	1.46(1H, t, J = 11.85 Hz)	48.22(t)
	2.03(1H, dd, J = 3.30, 11.85 Hz)	
13		52.63 (s)
14		85.60(s)
15	1.96–1.98 and 1.56 (each 1H, obscured signal)	34.92(t)
16	2.21 and 1.83 (each 1H, m)	31.10(t)
17	2.71(1H, dd, J = 7.57, 8.79 Hz)	51.23 (d)
18	0.84(3H, s)	20.57 (q)
19	5.75(1H, s)	104.66 (d)
20		122.66(d)
21	7.45(1H, m)	149.32 (d)
22	7.87 (1H, dd, I = 2.57, 9.77 Hz)	147.32(d)
23	6.29(1H, dd, I = 0.85, 9.77 Hz)	115.41(d)
24		162.07 (s)
-COMe	2.07 (3H, s)	21.20(q)
-СОМе		171.00(s)

TABLE 2. ¹H and ¹³C Chemical Shifts of Compound 1.^a

^aThe measurements were made on a JEOL GX-400 spectrometer in CD₃OD with TMS as an internal reference, and are expressed in terms of ppm.

FIGURE 1. ¹H-¹H COSY Spectrum of Bryophyllin B [1].

tween H-8 and H-9 and between H-9 and H-11 were also trans diaxial $(J_{8,9}$ and $J_{9,11} = 11.35$ Hz) to each other.

The ¹³C-¹H long range COSY (5) of **1** was measured in order to confirm the partial structure discussed below. As shown in Figure 3, the proton signal at δ 0.84 (Me-18) is correlated with the carbons at δ 48.22 (C-12), 52.63 (C-13), 85.60 (C-14), and 51.23 (C-17), and the signal at δ 1.30 (H-9) is correlated with the carbons at δ 76.08 (C-5) and 54.37 (C-10). Also, the proton signals at δ 7.45 (H-21), 7.87 (H-22), and 6.29 (H-23) are correlated with the carbons at δ 122.66 (C-20), 147.32 (C-22) and 162.07 (C-24), and δ 122.66 (C-20), respectively. Furthermore, the proton signal at δ 4.69 (H-1) is correlated with the carbon at δ 104.66 (C-19), suggesting that the position of the acetoxyl group is at C-1. Some of the other significant long-range correlations observed are shown by arrows in Figure 3.

The relative stereochemistry of **1** and connectivity between C-17 and C-20 were determined on the basis of coupling constants of each proton and the results of difference nOe experiments (Figure 4). Irradiation at the frequency of the Me-18 proton signal (δ 0.84) enhanced the signal intensity of two olefins (H-21 and H-22), one of the methylene (H-12), and two methine protons (H-8 and H-11). This suggests that the

Me-18, 8-, and 11-protons have a 1,3-diaxial relationship to each other and that the Me-18 and α -pyrone ring are in a cis orientation. Irradiation at the frequency of H-3 (δ 3.79) and H-19 (δ 5.75) enhanced the signal intensity of H-1 (δ 4.69), H-6 (δ 1.98), and the methylene proton (H-2 β , δ 1.54).

Based on the above evidence and a biogenetic point of view regarding the co-occurrence of bryophyllin B with 2 and 3 from the same plant, the structure of bryophyllin B was determined to be 1.

Added confirmation of the structure of **1** was achieved by the transformation of **2** to the 1 β -acetate [**1**]. Compound **2** was treated with 10-camphor sulfonic acid in a mixture of CH₂Cl₂ and H₂O for 2 days at room temperature to afford a 2:1 mixture of **1** and **2**. This type of equilibrium was observed by Kupchan *et al.* (6) previously in their treatment of either bersaldegenin 1-acetate [**6**] or bersaldegenin 1,3,5-orthoacetate [**7**] with 80% HOAc at 90° to yield a 1:1 equilibrium mixture of **6** and **7**.

The formation of 1 from 2 under acidic conditions as described above may be controlled by stereoelectronic effects (7) as explained in Scheme 2.

SCHEME 2. Transformation of 2 to 1.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—All melting points were taken on a Fisher-Johns melting-point apparatus and are uncorrected. Ir spectra were recorded on a Perkin-Elmer 1320 spectrophotometer. ¹H- and ¹³C-nmr spectra were measured on JEOL GX-400 and Varian XL-400 spectrometers with TMS as an internal standard. Mass spectra were taken on a Shimazu DF 2000 spectrometer by the fab method. Si gel (Kieselgel 60, 230–400 mesh, Merck) was used for cc, and pre-coated Si gel plates (Kieselgel 60 F_{254} , 0.25 mm, Merck) were used for analytical tlc. Detection of bufadienolides was made by spraying with 10% H_2SO_4 solution containing 1% Ce(SO₄)₂ followed by heating. Hplc was carried out on a Waters Associates Model ALC/GPC 244 liquid chromatograph with a 450 variable wavelength detector. The column used in this system was Nucleosil 7C₁₈ (Macherey-Nagel) 10 × 250 mm. MeOH-H₂O-HOAc (60:40:0.2) and MeCN-H₂O-HOAc (40:60:0.2) were used as the mobile phase, and the flow rate was 2–4 ml/min.

PLANT MATERIAL.—B. pinnatum (8) was collected in the spring of 1987 in Taipei, Taiwan. A voucher specimen of this plant is kept at the Institute of Botany, Academia Sinica, Taiwan.

EXTRACTION AND ISOLATION OF BRYOPHYLLIN B.—As shown in Scheme 1, the whole fresh plant of *B. pinnatum* (10 kg), was homogenized with H_2O (2 liters). This H_2O extract was filtered and concentrated in vacuo to 1.5 liters. After having been shaken with CHCl₃, it was extracted with *n*-BuOH (500 ml \times 3). The *n*-BuOH extract (2.7 g) was subjected to cc on Sephadex LH-20 (4 \times 38 cm) and eluted with a gradient of H₂O, 50% MeOH, and MeOH to give 16 fractions. Fractions 5, 6, 14, and 15 were found to show significant cytotoxity in KB cells. Fraction 5 (119.6 mg) was further chromatographed on Si gel (2 \times 18 cm) and eluted with CHCl₃-MeOH (10:1, each fraction 30 ml) to afford 10 fractions. Purification of the active fraction 5 (6.6 mg) by reversed-phase hplc furnished bryophyllin B [1] (4.3 mg).

BRYOPHYLLIN B [1].—Bryophyllin B was isolated as a colorless amorphous powder: C₂₆H₃₄O₉; mp 178–180°, [α]²⁰D +20° (c = 0.1, CHCl₃); uv λ max (MeOH) 298 (ε 5800) nm; ir (CHCl₃) 3400 (OH), 1695 (C=O), 1120 (C-O) cm⁻¹; fabms m/z [M]⁺ 490, [M – H₂O]⁺ 472, [M – HOAc]⁺ 432.

ACETYLATION OF BRYOPHYLLIN B [1].—A solution of 1 (2.0 mg) in a mixture of pyridine (0.2 ml) and Ac₂O (0.1 ml) was allowed to stand at room temperature overnight, then diluted with H₂O and extracted with EtOAc. The EtOAc extract was washed with saturated NaCl solution, dried over Na₂SO₄, and evaporated. The residue was purified by preparative tlc to give a diacetate 4: ¹H nmr (CDCl₃) δ 7.67 (1H, dd, J = 2.57, 9.71 Hz, H-22), 7.23 (1H, br s, H-21), 6.74 (1H, s, H-19 α), 6.29 (1H, dd, J = 0.73, 9.71 Hz, H-23), 4.89 (1H, m, H-3 α), 4.74 (1H, dd, J = 4.22, 12.46 Hz, H-1 α), 3.96 (1H, ddd, J = 3.30, 11.17, 11.54 Hz, H-11 β), 2.60 (1H, dd, J = 8.14, 8.80 Hz, H-17 α), 2.43 (1H, br t, J = 11.73 Hz, H-8 β), 2.22 (3H, s, 19 β -OAc), 2.12 (3H, s, 3 β -OAc), 2.03 (3H, s, 1 β -OAc), 0.85 (3H, s, Me-18).

When compound 4 was dissolved in CDCl₃ and allowed to stand for two days, it yielded a monoacetate 5: ¹H nmr (CDCl₃) δ 7.67 (1H, dd, J = 2.57, 9.71 Hz, H-22), 7.23 (1H, br s, H-21), 6.29 (1H, dd, J = 0.73, 9.71 Hz, H-23), 5.84 (1H, s, H-19 α), 4.89 (1H, m, H-3 α), 4.74 (1H, dd, J = 4.22, 12.46 Hz, H-1 α), 4.05 (1H, ddd, J = 3.30, 11.17, 11.54 Hz, H-11 β), 2.60 (1H, dd, J = 8.14 and 8.80 Hz, H-17 α), 2.43 (1H, br t, J = 11.73 Hz, H-8 β), 2.09 (3H, s, 3 β -OAc), 2.03 (3H, s, 1 β -OAc), 0.85 (3H, s, Me-18).

TRANSFORMATION OF BRYOTOXIN C [2] TO BRYOPHYLLIN B [1].—A solution of 2 (1.0 mg) in a mixture of CH_2Cl_2 (1.0 ml) and H_2O (1 drop) was treated with a catalytic amount of (±)-10-camphor sulfonic acid for 2 days at room temperature. The reaction mixture was diluted with H_2O (3.0 ml) and extracted with CH_2Cl_2 . The CH_2Cl_2 extract was washed with saturated NaCl and evaporated to yield a residue. This residue showed two peaks in a ratio of 1:2, corresponding to 1 and 2, respectively, on reversed-phase hplc [7C₁₈, 10 × 250 mm, MeOH-H₂O-HOAc (50:50:0.1), 3 ml/min, 298 nm].

CYTOTOXICITY ASSAY.—The in vitro KB cytotoxicity assay was carried out according to procedures described in Geran *et al.* (9) and Ferguson *et al.* (10). The assay against A-549, HCT-8, P-388, and L-1210 tumor cells was based on a method reported in Lee *et al.* (11).

ACKNOWLEDGMENTS

We thank Dr. H. Tanino of the Faculty of Pharmacy, Meijo University, Nagoya, Japan and Dr. Y.C. Cheng and M. Fischer of the Department of Pharmacology, UNC-Chapel Hill, for the measurement of nmr spectra and KB cell assay, respectively. This work was supported by a grant from the National Cancer Institute, NIH No. Ca 17625 (K.H. Lee).

LITERATURE CITED

- 1. T. Yamagishi, X.Z. Yan, R.Y. Wu, D.R. McPhail, A.T. McPhail, and K.H. Lee, Chem. Pharm. Bull., 36, 1615 (1988).
- 2. R.J. Capon, J.K. Macleod, and P.B. Oelrichs, Aust. J. Chem., 39, 1711 (1986).
- 3. S.M. Kupchan and J. Ognyanov, Tetrahedron Lett., 21, 1709 (1969).
- 4. H. Wagner, H. Lotter, and M. Fisher, Helv. Chim. Acta, 69, 359 (1986).
- 5. C. Francisco, B. Banaigs, and J. Teste, J. Org. Chem., 51, 1115 (1986).
- 6. S.M. Kupchan, I. Ognyanov, and J.L. Moniot, Bioorg. Chem., 1, 13 (1971).
- 7. P. Deslongchamps, "Stereoelectronic Effects in Organic Chemistry," Pergamon Press, New York, 1983, Chapters 3 and 8.
- 8. H.L. Li, T.S. Liu, T.C. Huang, T. Koyama, and C.E. DeVol, "Flora of Taiwan," (1977), Vol. 3, p. 12.
- 9. R.I. Geran, N.H. Greenberg, M.M. Macdonald, A.M. Schumacher, and B.J. Abbott, Cancer Chemother. Rep., Part 3, 3(2), 1 (1972).
- 10. P.J. Ferguson, M.H. Fisher, J. Stephenson, D.H. Li, B.S. Zhou, and Y.C. Cheng, *Cancer Res.*, **48**, 5956 (1988).
- K.H. Lee, Y.M. Lin, T.S. Wu, D.C. Zhang, T. Yamagishi, T. Hayashi, I.H. Hall, J.J. Chang, R.Y. Wu, and T.H. Yang, *Planta Med.*, 54, 308 (1988).