ANTITUMOR AGENTS, 110. ${ }^{1,2}$ BRYOPHYLLIN B, A NOVEL POTENT CYTOTOXIC BUFADIENOLIDE FROM BRYOPHYLLUM PINNATUM

Takashi Yamagishi, Mitsumasa Haruna, Xiu-Zhen Yan, Jer-Jang Chang, ${ }^{3}$ and Kuo-Hsiung Lee*
Natural Products Laboratoy, Division of Medicinal Chemistry and Natural Products, School of Pbarmacy, University of North Carolina, Cbapel Hill, North Carolina 27599

> Abstract.-Bryophyllin B [1], a potent cytotoxic bufadienolide, has been isolated from Bryophyllum pinnatum and its structure confirmed by the use of 2D-nmr techniques and difference nOe method. Transformation of bryotoxin $\mathrm{C}[2]$ to 1 with acid is also discussed.

We reported previously on the isolation of bryotoxin C (bryophyllin A) [2] (1), a bufadienolide 1,3,5-orthoacetate with potent cytotoxicity, and bersaldegenin-3-acetate $[3](3,4)$ from the CHCl_{3} extract of Bryophyllum pinnatum (Crassulaceae). Bryoroxin C was first isolated by Capon et al. (2) from Bryophyllum tubiflorum without reporting any biological activity. Further investigation of a cytotoxic $\mathrm{H}_{2} \mathrm{O}$ extract of this same plant has led to the isolation of bryophyllin $\mathrm{B}[1]$, which showed potent cytotoxity with $E D_{\text {so }}$ $<80 \mathrm{ng} / \mathrm{ml}$ against the in vitro growth of KB tissue culture cells (Table 1). We report herein the isolation and structural elucidation of bryophyllin $\mathrm{B}[1]$. The transformation of 2 to $\mathbf{1}$ with acid is also discussed.

RESULTS AND DISCUSSION

The $\mathrm{H}_{2} \mathrm{O}$ extract of the whole plant of B. pinnatum was concentrated and partitioned between $\mathrm{H}_{2} \mathrm{O}$ and CHCl_{3}. Guided by the assay in KB cells as shown in Scheme 1, the active principles were concentrated in the CHCl_{3} (Fractions A and B) and the $\mathrm{H}_{2} \mathrm{O}$ extracts. Bryotoxin C (bryophyllin A) [2] and bersaldegenin-3-acetate [3] were isolated from the CHCl_{3} extract. The $\mathrm{H}_{2} \mathrm{O}$-soluble part was extracted with n - BuOH , which in turn was chromatographed on Sephadex LH-20 Si gel and reversed-phase

[^0]Table 1. Cytotoxicity of Compounds 1, 2, and 3 Against Various Tumor Cells.

Compound	KB $(\mathrm{ng} / \mathrm{ml})$	$\mathrm{A}-549$ $(\mathrm{ng} / \mathrm{ml})$	$\mathrm{HCT}-8$ $(\mathrm{ng} / \mathrm{ml})$	$\mathrm{P}-388$ $(\mu \mathrm{~g} / \mathrm{ml})$	$\mathrm{L}-1210$ $(\mu \mathrm{~g} / \mathrm{ml})$
Bryophyllin B [1]	<80	-	-	-	-
Bryotoxin C [2]	14	10	30	>4	>4
Bersaldegenin-3-acetate [3]..	<40	40	10	>4	>4

hplc, successively, to afford the active principle, bryophyllin B [1], in 0.000043% yield.

Bryophyllin B [1] was obtained as a colorless amorphous powder and analyzed for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{9}$. Its uv and ir spectra indicated the presence of a dienone system ($\lambda \max 298$

SCheme 1. Extraction and Isolation of Bryophyllin B \{1].
nm) as well as hydroxyl ($3400 \mathrm{~cm}^{-1}$) and carbonyl ($1695 \mathrm{~cm}^{-1}$) groups as seen in 2. The fabms of 1 showed the appearance of an $[\mathrm{M}]^{+}$peak at $m / z 490$ and fragment ion peaks at $m / z 472\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$and $432[\mathrm{M}-\mathrm{HOAc}]^{+}$.

Detailed analysis of the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra (Table 2) of $\mathbf{1}$ in ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Correlation Spectroscopy) (Figure 1) and ${ }^{13} \mathrm{C}^{1} \mathrm{H} \operatorname{COSY}$ (Figure 2) suggested the presence of a methyl ($\delta_{\mathrm{H}} 0.84$ and $\delta_{\mathrm{C}} 20.57$), a secondary acetoxyl ($\delta_{\mathrm{H}} 2.07$ and $4.69 ; \delta_{\mathrm{C}}$ $171.00,21.20$, and 73.38), a γ-substituted $\alpha, \beta, \gamma, \delta$-unsaturated- $\boldsymbol{\gamma}$-lactone (α pyrone) ($\delta_{\mathrm{H}} 7.45,7.87$, and $6.92 ; \delta_{\mathrm{C}} 149.32,147.32,115.41,122.66$, and 162.07), a secondary hydroxyl ($\delta_{\mathrm{H}} 3.79$ and $\delta_{\mathrm{C}} 65.01$), two tertiary hydroxyl ($\delta_{\mathrm{C}} 76.08$ and 85.60), and lactol ($\delta_{\mathrm{H}} 5.75,3.99$, and $1.30 ; \delta_{\mathrm{C}} 104.66,79.99$, and 49.53) groups. Treatment of 1 with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine gave diacetate 4 , which was transformed to monoacetate 5 after standing in CHCl_{3} for two days. These foregoing data and experiment indicate that $\mathbf{1}$ may be a compound closely related to $\mathbf{2}$ except that the orthoacetate and acetal groups differ from each other.

Each carbon signal, except the quarternary one, was assigned based on the ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY spectral data (Figure 2). In the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 1 , six mutual relations from $\mathrm{H}-1, \mathrm{H}-3$ (twice), $\mathrm{H}-8, \mathrm{H}-11$, and $\mathrm{H}-17$ to $2-\mathrm{CH}_{2}, 4-\mathrm{CH}_{2}, 7-\mathrm{CH}_{2}, 12-\mathrm{CH}_{2}$, and $16-\mathrm{CH}_{2}$ methylene protons due to an ABX system were elucidated as shown in Figure 3. The configuration of each X-type proton of this ABX system is in an axial orientation, which has a large coupling constant (Table 1). Furthermore, the relationships be-

Table 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Chemical Shifts of Compound 1. ${ }^{2}$

Position	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$
1	$4.69(1 \mathrm{H}, \mathrm{dd}, J=4.03,12.45 \mathrm{~Hz})$	73.38 (d)
2	2.11 (1H, ddd $, J=4.03,4.64,12.45 \mathrm{~Hz})$	39.51 (t)
	$1.54(1 \mathrm{H}, \mathrm{q}, J=12.45 \mathrm{~Hz})$	
3	$3.79(1 \mathrm{H}, \mathrm{m})$	65.01 (d)
4	1.96-1.98 and 1.88 (each 1H, obscured signal)	47.79 (t)
5		76.08 (s)
6	1.98 and 1.58 (each 1 H , obscured signal)	32.11 (t)
7	$\begin{aligned} & 1.11(1 \mathrm{H}, \text { dddd, } J=3.78,9.52,12.94,13.31 \mathrm{~Hz}) \\ & 1.96-1.98(1 \mathrm{H} \text {, obscured signal }) \end{aligned}$	20.78 (t)
8	2.42 (1 H, ddd, $J=2.93,11.35,13.31 \mathrm{~Hz}$)	39.97 (d)
9	$1.30(1 \mathrm{H}, \mathrm{t}, J=11.35 \mathrm{~Hz})$	49.53 (d)
10		54.37 (s)
11	$3.99(1 \mathrm{H}, \mathrm{ddd}, J=3.30,11.35,11.85 \mathrm{~Hz})$	79.99 (d)
12	$\begin{aligned} & 1.46(1 \mathrm{H}, \mathrm{t}, J=11.85 \mathrm{~Hz}) \\ & 2.03(1 \mathrm{H}, \mathrm{dd}, J=3.30,11.85 \mathrm{~Hz}) \end{aligned}$	48.22 (t)
13		52.63 (s)
14		85.60 (s)
15	1.96-1.98 and 1.56 (each 1H, obscured signal)	34.92 (t)
16	2.21 and 1.83 (each 1H, m)	31.10 (t)
17	$2.71(1 \mathrm{H}, \mathrm{dd}, J=7.57,8.79 \mathrm{~Hz})$	51.23 (d)
18	0.84 ($3 \mathrm{H}, \mathrm{s}$)	20.57 (q)
19	5.75 (1H,s)	104.66 (d)
20		122.66 (d)
21	7.45 (1H, m)	149.32 (d)
22	$7.87(1 \mathrm{H}, \mathrm{dd}, J=2.57,9.77 \mathrm{~Hz})$	147.32 (d)
23	$6.29(1 \mathrm{H}, \mathrm{dd}, J=0.85,9.77 \mathrm{~Hz})$	115.41 (d)
24		162.07 (s)
- COM Me	2.07 (3H, s)	21.20 (q)
-COMe		171.00 (s)

[^1]

Figure 1. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY Spectrum of Bryophyllin B [1].
tween H-8 and H-9 and between $\mathrm{H}-9$ and $\mathrm{H}-11$ were also trans diaxial ($J_{8,9}$ and $J_{9,11}=11.35 \mathrm{~Hz}$) to each other.

The ${ }^{13} \mathrm{C}^{-1} \mathrm{H}$ long range $\operatorname{COSY}(5)$ of $\mathbf{1}$ was measured in order to confirm the partial structure discussed below. As shown in Figure 3, the proton signal at $\delta 0.84$ (Me-18) is correlated with the carbons at $\delta 48.22$ (C-12), 52.63 (C-13), 85.60 (C-14), and 51.23 (C-17), and the signal at $\delta 1.30(\mathrm{H}-9)$ is correlated with the carbons at $\delta 76.08$ (C-5) and $54.37(\mathrm{C}-10)$. Also, the proton signals at $\delta 7.45(\mathrm{H}-21), 7.87(\mathrm{H}-22)$, and 6.29 (H-23) are correlated with the carbons at $\delta 122.66(\mathrm{C}-20), 147.32(\mathrm{C}-22)$ and 162.07 (C-24), and $\delta 162.07(\mathrm{C}-24)$ and $\delta 122.66(\mathrm{C}-20)$, respectively. Furthermore, the proton signal at $\delta 4.69(\mathrm{H}-1)$ is correlated with the carbon at $\delta 104.66(\mathrm{C}-19)$, suggesting that the position of the acetoxyl group is at $\mathrm{C}-1$. Some of the other significant longrange correlations observed are shown by arrows in Figure 3.

The relative stereochemistry of $\mathbf{1}$ and connectivity between $\mathrm{C}-17$ and $\mathrm{C}-20$ were determined on the basis of coupling constants of each proton and the results of difference nOe experiments (Figure 4). Irradiation at the frequency of the Me-18 proton signal (δ 0.84) enhanced the signal intensity of two olefins ($\mathrm{H}-21$ and $\mathrm{H}-22$), one of the methylene ($\mathrm{H}-12$), and two methine protons ($\mathrm{H}-8$ and $\mathrm{H}-11$). This suggests that the

Figure 2. ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY Spectrum of Bryophyllin B [1].

Figure 3. Long-range ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY of Bryophyllin $\mathrm{B}\{1\}(J=10.0 \mathrm{~Hz})$.

[^2]Figure 4. Difference nOe of Bryophyllin B [1]

Me-18, 8-, and 11-protons have a 1,3-diaxial relationship to each other and that the $\mathrm{Me}-18$ and α-pyrone ring are in a cis orientation. Irradiation at the frequency of $\mathrm{H}-3$ (δ 3.79) and $\mathrm{H}-19$ ($\delta 5.75$) enhanced the signal intensity of $\mathrm{H}-1$ ($\delta 4.69$), $\mathrm{H}-6$ ($\delta 1.98$), and the methylene proton ($\mathrm{H}-2 \beta, \delta 1.54$).

Based on the above evidence and a biogenetic point of view regarding the co-occurrence of bryophyllin B with 2 and $\mathbf{3}$ from the same plant, the structure of bryophyllin B was determined to be 1.

Added confirmation of the structure of $\mathbf{1}$ was achieved by the transformation of $\mathbf{2}$ to the 1β-acetate [1]. Compound 2 was treated with 10 -camphor sulfonic acid in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ for 2 days at room temperature to afford a 2:1 mixture of 1 and 2. This type of equilibrium was observed by Kupchan et al. (6) previously in their treatment of either bersaldegenin 1-acetate [6] or bersaldegenin 1,3,5-orthoacetate [7] with $80 \% \mathrm{HOAc}$ at 90° to yield a $1: 1$ equilibrium mixture of 6 and 7 .

The formation of $\mathbf{1}$ from 2 under acidic conditions as described above may be controlled by stereoelectronic effects (7) as explained in Scheme 2.

$\underset{\substack{\mathrm{H}+\mathrm{o}_{\mathrm{o}} \mathrm{H} \\ \mathrm{H}}}{ }$
a
b

2

e

d

c

SCheme 2. Transformation of 2 to 1.

EXPERIMENTAL

General experimental procedures.-All melting points were taken on a Fisher-Johns melt-ing-point apparatus and are uncorrected. Ir spectra were recorded on a Perkin-Elmer 1320 spectrophotometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra were measured on JEOL GX- 400 and Varian XL- 400 spectrometers with TMS as an internal standard. Mass spectra were taken on a Shimazu DF 2000 spectrometer by the fab method. Si gel (Kieselgel 60, 230-400 mesh, Merck) was used for cc, and pre-coated Si gel plates (Kieselgel $60 \mathrm{~F}_{254}, 0.25 \mathrm{~mm}$, Merck) were used for analytical tlc. Detection of bufadienolides was made by spraying with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution containing $1 \% \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ followed by heating. Hplc was carried out on a Waters Associates Model ALC/GPC 244 liquid chromatograph with a 450 variable wavelength detector. The column used in this system was Nucleosil 7 C_{18} (Macherey-Nagel) 10×250 mm . MeOH- $\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}$ ($60: 40: 0.2$) and $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}$ (40:60:0.2) were used as the mobile phase, and the flow rate was $2-4 \mathrm{ml} / \mathrm{min}$.

Plant material.-B. pinnatum (8) was collected in the spring of 1987 in Taipei, Taiwan. A voucher specimen of this plant is kept at the Institute of Botany, Academia Sinica, Taiwan.

Extraction and isolation of bryophyllin B.-As shown in Scheme 1 , the whole fresh plant of B. pinnatum (10 kg), was homogenized with $\mathrm{H}_{2} \mathrm{O}$ (2 liters). This $\mathrm{H}_{2} \mathrm{O}$ extract was filtered and concentrated in vacuo to 1.5 liters. After having been shaken with CHCl_{3}, it was extracted with $n-\mathrm{BuOH}$ (500
$\mathrm{ml} \times 3$). The $n-\mathrm{BuOH}$ extract (2.7 g) was subjected to cc on Sephadex $\mathrm{LH}-20(4 \times 38 \mathrm{~cm}$) and eluted with a gradient of $\mathrm{H}_{2} \mathrm{O}, 50 \% \mathrm{MeOH}$, and MeOH to give 16 fractions. Fractions 5, 6, 14 , and 15 were found to show significant cytotoxity in KB cells. Fraction $5(119.6 \mathrm{mg})$ was further chromatographed on Si gel ($2 \times 18 \mathrm{~cm}$) and eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($10: 1$, each fraction 30 ml) to afford 10 fractions. Purification of the active fraction $5(6.6 \mathrm{mg})$ by reversed-phase hplc furnished bryophyllin $B[1](4.3 \mathrm{mg})$.

Bryophyllin $\mathrm{B}[1]$.-Bryophyllin B was isolated as a colorless amorphous powder: $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{9}$; mp $178-180^{\circ},[\alpha]^{20} \mathrm{D}+20^{\circ}\left(\kappa=0.1, \mathrm{CHCl}_{3}\right)$; uv $\lambda \max (\mathrm{MeOH}) 298(\epsilon 5800) \mathrm{nm}$; ir $\left(\mathrm{CHCl}_{3}\right) 3400(\mathrm{OH})$, $1695(\mathrm{C}=\mathrm{O}), 1120(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; fabms $m / z[\mathrm{M}]^{+} 490,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 472,[\mathrm{M}-\mathrm{HOAc}]^{+} 432$.

ACETYLATION OF BRYOPHYLLIN B [1]. -A solution of $1(2.0 \mathrm{mg})$ in a mixture of pyridine (0.2 ml) and $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{ml})$ was allowed to stand at room temperature overnight, then diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ErOAc. The ErOAc extract was washed with saturated NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The residue was purified by preparative tic to give a diacetate $\mathbf{4}:{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 7.67$ (1 H , dd, $J=2.57,9.71 \mathrm{~Hz}, \mathrm{H}-22$), 7.23 (1 H , br s, H-21), 6.74 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19 \alpha$), 6.29 (1 H , dd, $J=0.73,9.71 \mathrm{~Hz}, \mathrm{H}-23), 4.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 4.74(1 \mathrm{H}, \mathrm{dd}, J=4.22,12.46 \mathrm{~Hz}, \mathrm{H}-1 \alpha), 3.96(1 \mathrm{H}$, ddd, $J=3.30,11.17,11.54 \mathrm{~Hz}, \mathrm{H}-11 \beta), 2.60(1 \mathrm{H}, \mathrm{dd}, J=8.14,8.80 \mathrm{~Hz}, \mathrm{H}-17 \alpha), 2.43(1 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J=11.73 \mathrm{~Hz}, \mathrm{H}-8 \beta), 2.22(3 \mathrm{H}, \mathrm{s}, 19 \beta-\mathrm{OAc}), 2.12(3 \mathrm{H}, \mathrm{s}, 3 \beta-\mathrm{OAc}), 2.03(3 \mathrm{H}, \mathrm{s}, 1 \beta-\mathrm{OAc}), 0.85(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-18$).

When compound 4 was dissolved in CDCl_{3} and allowed to stand for two days, it yielded a monoacetate 5: ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 7.67(1 \mathrm{H}, \mathrm{dd}, J=2.57,9.71 \mathrm{~Hz}, \mathrm{H}-22), 7.23(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-21), 6.29(1 \mathrm{H}, \mathrm{dd}$, $J=0.73,9.71 \mathrm{~Hz}, \mathrm{H}-23), 5.84(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19 \alpha), 4.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \alpha), 4.74(1 \mathrm{H}, \mathrm{dd}, J=4.22,12.46$ $\mathrm{Hz}, \mathrm{H}-1 \alpha), 4.05(1 \mathrm{H}$, ddd, $J=3.30,11.17,11.54 \mathrm{~Hz}, \mathrm{H}-11 \beta), 2.60(1 \mathrm{H}, \mathrm{dd}, J=8.14$ and 8.80 Hz , $\mathrm{H}-17 \alpha), 2.43(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=11.73 \mathrm{~Hz}, \mathrm{H}-8 \beta), 2.09(3 \mathrm{H}, \mathrm{s}, 3 \beta-\mathrm{OAc}), 2.03(3 \mathrm{H}, \mathrm{s}, 1 \beta-\mathrm{OAc}), 0.85(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-18$).

Transformation of bryotoxin C [2] TO BRyophyilin B [1].-A solution of 2 (1.0 mg) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$ (1 drop) was treated with a catalytic amount of (\pm)-10-camphor sulfonic acid for 2 days at room temperature. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was washed with saturated NaCl and evaporated to yield a residue. This residue showed two peaks in a ratio of $1: 2$, corresponding to $\mathbf{1}$ and 2 , respectively, on reversedphase hple [$7 \mathrm{C}_{18}, 10 \times 250 \mathrm{~mm}$, MeOH- $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}(50: 50: 0.1), 3 \mathrm{ml} / \mathrm{min}, 298 \mathrm{~nm}\right]$.

CyTOTOXICITY ASSAY.-The in vitro KB cytotoxicity assay was carried out according to procedures described in Geran et al. (9) and Ferguson et al. (10). The assay against A-549, HCT-8, P-388, and L-1210 tumor cells was based on a method reported in Lee et al. (11).

ACKNOWLEDGMENTS

We thank Dr. H. Tanino of the Faculty of Pharmacy, Meijo University, Nagoya, Japan and Dr. Y.C. Cheng and M. Fischer of the Department of Pharmacology, UNC-Chapel Hill, for the measurement of nmr spectra and KB cell assay, respectively. This work was supported by a grant from the National Cancer Institute, NIH No. Ca 17625 (K.H. Lee).

LITERATURE CITED

1. T. Yamagishi, X.Z. Yan, R.Y. Wu, D.R. McPhail, A.T. McPhail, and K.H. Lee, Chem. Pharm. Bull., 36, 1615 (1988).
2. R.J. Capon, J.K. Macleod, and P.B. Oelrichs, Aust. J. Chem., 39, 1711 (1986).
3. S.M. Kupchan and J. Ognyanov, Tetrabedron Lett., 21, 1709 (1969).
4. H. Wagner, H. Lotter, and M. Fisher, Helv. Chim. Acta, 69, 359 (1986).
5. C. Francisco, B. Banaigs, and J. Teste, J. Org. Cbem., 51, 1115 (1986).
6. S.M. Kupchan, I. Ognyanov, and J.L. Monior, Bioorg. Chem., 1, 13 (1971).
7. P. Deslongchamps, "Stereoelectronic Effects in Organic Chemistry," Pergamon Press, New York, 1983, Chapters 3 and 8.
8. H.L. Li, T.S. Liu, T.C. Huang, T. Koyama, and C.E. DeVol, "Flora of Taiwan," (1977), Vol. 3, p. 12.
9. R.I. Geran, N.H. Greenberg, M.M. Macdonald, A.M. Schumacher, and B.J. Abbott, Cancer Chemother. Rep., Part 3, 3(2), 1 (1972).
10. P.J. Ferguson, M.H. Fisher, J. Stephenson, D.H. Li, B.S. Zhou, and Y.C. Cheng, Cancer Res., 48, 5956 (1988).
11. K.H. Lee, Y.M. Lin, T.S. Wu, D.C. Zhang, T. Yamagishi, T. Hayashi, I.H. Hall, J.J. Chang, R.Y. Wu, and T.H. Yang, Planta Med., 54, 308 (1988).

[^0]: ${ }^{1}$ For part 109 see D.J. Pan, Z.L. Li, C.Q. Hu, K. Chen, J.J. Chang, and K.H. Lee, submitted for publication in Planta Med.
 ${ }^{2}$ Presented, in part, at the 16 th International Symposium on the Chemistry of Natural Products (IUPAC), Kyoto, Japan, May 29-June 3, 1988, "Abstracts," p. 232.
 ${ }^{3}$ Division of Laboratory Animal Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599.

[^1]: ${ }^{2}$ The measurements were made on a JEOL GX- 400 spectrometer in $\mathrm{CD}_{3} \mathrm{OD}$ with TMS as an internal reference, and are expressed in terms of ppm .

[^2]:
 $\begin{array}{lllllllllllllllllllllllll}9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5\end{array}$

